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Abstract—Laminar forced convection inside rectangular ducts is analytically studied by extending the

generalized integral transform technique, allowing for the solution of convection—diffusion problems with

non-separable eigenvalue problems. Reference results are established for quantities of practical interest

within the thermal entry region, for a wide range of the axial variable and various aspect ratios. The

accuracy of previously reported results from direct numerical approaches is then critically examined, for
both the developing and fully developed regions.

INTRODUCTION

HEAT TRANSFER solutions for laminar forced flow
inside ducts of various shapes is of great interest to
the design of compact heat exchangers, solar col-
lectors and several other low Reynolds number flow
heat exchange devices [1,2]. The establishment of
benchmark results through analytical solutions is
quite desirable [2] for both reference purposes and
validation of direct numerical schemes, especially for
thermally developing flows. Except for the simpler
situations of ducts with cross sections definable by a
single coordinate, such as circular tubes, parallel-
plate channels, and annular ducts, a very limited
amount of analytical work is available in the litera-
ture, and most contributions deal with purely numeri-
cal or approximate approaches [1]. The case of a rect-
angular duct is a typical example of the difficulties
associated with solving multidimensional convection
problems, requiring costly numerical solutions [1],
limited to regions away from the inlet (longer ducts).
The exact solution of such a problem, through classical
analytical methods (3] is inhibited due to the non-
separable nature of the related eigenvalue problem.
The present contribution attempts to alleviate this
difficulty by extending the ideas in the so-called gener-
alized integral transform technique [4-11] to allow for
the solution of this formally transformable but non-
separable problem, providing an efficient algorithm
for numerical computations.

The case of a rectangular duct subjected to a con-
stant wall temperature is more closely considered to
illustrate the approach. An analysis of convergence is
made and a set of benchmark resuits established for
quantities of practical interest, such as dimensionless
average temperature, local and average Nusselt
numbers, within a wide range of the dimensionless axial
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coordinate. Previously reported results [1, 13-15]
from direct numerical approaches are then criti-
cally examined for both fully developed and thermally
developing regions, limited to a narrow range of the
dimensionless axial coordinate.

ANALYSIS

We consider laminar flow of a Newtonian fluid
inside a rectangular channel of sides 2a and 25, with
a fully developed velocity profile and subjected to a
constant wall temperature. For thermally developing
flow the associated energy equation is written in
dimensionless form as

0(X,Y,Z) 80 %
VN7 =T orm
O0<X<a 0<Y<f Z>0 (1a)

with inlet and boundary conditions given, respec-
tively, by

BX,Y,00=1, 0<X<a 0<Y<f (Ib)
00X, Y,
—(—-—-—Q =0; 0(x,Y,Z2)=0, Z>0 (lc,d)
ox Xm0
00(X, Y,
PELD)  _o; 68D =0, 250 (lef)
Y=0

where the following dimensionless groups were
defined :

_ T(x,y,z)—T,,,. x y
=" ¥=p; 71,
u(x, y) z pc,
X = ——— = M =__P
Ux,Y) v V4 D Fe’ Pe e u, D,
a b
*=5 F=5 @
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a half the side of the rectangular duct in
the x-direction

A, cross-sectional area

b half the side of the rectangular duct in
the y-direction

Dy hydraulic diameter, 44,/ P

local heat transfer coefficient

average heat transfer coefficient

K thermal conductivity

Pe  Peclet number, Re Pr

r coefficients from problem (15b),
j=L...,N'N*

T inlet temperature

T,  wall temperature

Hyy average flow velocity

ux,y) velocity field

NOMENCLATURE

X transversal coordinate
¥ transversal coordinate
z axial coordinate.

Greek symbols
2* aspect ratio of rectangular duct, 2b/2a

7 eigenvalues of matrix F, as in problem

(14)

{  eigenvector of matrix F, as in problem
(14)

A eigenvalues of problem (5)

W eigenvalues of problem (4)

¢,(y) eigenfunctions of problem (5)
Y{X) eigenfunctions of problem (4).

The dimensionless velocity profile is given as an
infinite series [1]

UK, V)= A4%G") Y BF(NG(X) ()
k=13,....

where
, 48
A @) = (3b)
2o 192 i tanh {(kna*/2)
ot 13 k*
(___ l)(k— /2
B; = — (3c)
cosh (M)
F(¥)= 11— —————2—a-~ (3d)
‘ osh kna*
cosh { ——
G (X) = cos (@) and
2
= 2b/2a = aspect ratio.  (3e.f)

The exact solution of problem (1) through well-
known analytical methods, such as the classical
integral transform technique [3}, is not possible due
to the non-separable nature of the velocity profile
and consequently, of the related eigenvalue problem.
However, the recently advanced ideas on the gener-
alized integral transform technique [4-11] can be
modified to allow for an analytical treatment of the
present problem as now demonstrated. First, the
difficulties associated with the eigenvalue problem
are alleviated by choosing the following auxiliary
problems instead :

Y X)
—»"é(",‘z ) (LX) =0; 0<X<z (da)

de(u X)) _ -
—ax |, vma =0 @bo)
and
d_”?};;_”l+,gl¢(i,Y)=0; 0<Y<f (%)
de{i, Y .
¢§‘Y ),,‘0:0; G, B) = (5b.c)

which are readily solved to yield eigenfunctions, eigen-
values, and norms as

¥ () = cos(uX); da(Y)=cos(4,Y)  (6ab)
_QRi=Dr, _@m—Dn
Hi = Dy H] }"m - 2ﬁ (6C,d)
X, B .
JV;=§, AM,":E, Lm= 1,2,..., (6€,f)

Problems {4) and (5) above aliow the establishment
of the following integral transform pair.

Transform
- = '8
OimlZ) = f f Y. (NOX, Y, Z)dYdX. (Ta)

Inversion

(2631 00Y JP,

X, Y,Z) = Z Z N

iw}m=l

Equation (1a) is now operated on with

= ('8
f J ¥i(X)¢n(Y)dY dX
0 Jo

to yield, after employing the inversion formula above
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% 3 Dy dggf’ +(u?+22)0n(2) =

Jm |l am}

Z>0 (8a)

where

L[
Dy = 531 L J; YA XW(X)dn(Y)u(Y)

xU(X,Y)dYdX (8b)
while the transformed inlet condition becomes

(__ I)H-m .

Hilem

G.n(0) = Gim = (8¢)

The double integral in equation (8b) is evaluated to
provide

A*(@*) 2=
Dlj\mn = —m— i Z Bkd’qkwmnk (93)
where
Vo = (_,l)‘*i«f—(k— nﬂ{ i . 1
e 4 it i —a =+
1 1
+ - 9b
W= pita; #i+l~‘/+ak} Gb)
. (_ l)m+n+ 1
'pmnk - Mmamn“' 2 a (anh (ak ﬂ)

1 1
{aﬁ(z,.—a,,)z B ak+(z,.,+an)2}

kn
ak =

T (9¢c)

System (8) above provides a denumerable system of
coupled ordinary differential equations with constant
coefficients, to be solved for the transformed poten-
tials, 8,,'s. So far the analysis is formal and exact, but
for the sake of obtaining numerical results from this,
a priori, formal solution, the infinite system (8) has
to be truncated to a sufficiently large finite order for
the desired convergence. Then, following ref. [8], the
truncated system is written as

N’
5y D,,mdgf"(z’ + (2 +i)8,(2) =0,

Jol nmi

i=12,...,

N, m=12,...,N* (10a)
with
.n(0) = G (10b)

and the finite system (10) of ¥+ N* coupled equations
is given in matrix form

CY+Ey=0
yO =g

(11a)
(11b)

where
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y= {gl (2), §|2(Z), glN‘(Z)v 52,(2),

b:e(@),.... 00D NN-(Z)}’ (122)
g={5ll9g=l27 1gIN"1g’h vng‘a s
Gnise- G}’ (12b)
E={e} & =06u(ui+D), a,,={?: :’_f}’
(12¢)
jon=1,2,...,N'N*; I=int(jiN*®+1;
k=j—-N*int (j—1DIN*); C={c.};
¢o=Dypw; jin=12,...,N-N*;
=int (n/N*)+1;
K = n—N*int (n—1)/N*). (12d)

System (1) can then be rewritten in normal form
through inversion of matrix C to yield

y+Fy=0 {13a)
y0) =g (13b)

where
F=C"'E {13c)

This finite (N+N*) system with a constant co-
efficients matrix, F, can be readily solved once the
eigenvalues and eigenvectors of the real matrix Fhave
been obtained from the solution of the algebraic
problem

(F—3yI} =0 (14)
and the solution of system (13) is written as
Y@y =r e F L g o hry e e ZEVND
(15a)

where the coefficients r,, ..., 7y.5« are obtained from
satisfying the transformed inlet condition, which cor-
responds to solving the following system of linear
algebraic equations:

L v LV ¥ = g (15b)

Problems (14) and (15b) are handled by making use
of well-known algorithms already available as packed
subroutines, such as in ref. [12], to provide the trans-
formed potentials from equation (15a). Alternatively,
efficient numerical algorithms for initial value prob-
lems can be utilized to directly solve system (13), such
as in subroutine DGEAR from the IMSL package
[12}, with high accuracy.

Once the transformed potentials have been
obtained, the inversion formula (7b) is recalled to
provide the complcte temperature profile

2 Z cos (X) €0 (in Y)m(2).

l-( LIS
(16)

The dimensionless average temperature is then
computed from its definition

0X,Y,2) =
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6,.(2) = 21: J; UX, NOX, Y, Z)d4  (17a)
) g
0@=225 ¥ 80ud.@ am)
where o
0, = ﬁ—}% (170

The local Nusselt number can be evaluated by
making use of the temperature gradients at the wall
integrated over the perimeter, or utilizing the axial
gradient of the average temperature, providing the
following couple of working formulae:

_hE@D, !
N = = ~ TP @
* 30X, Y, 2) 5 30(X, Y, Z)
x{J; a7 vs dX+J; A Xﬂd}’}
(18a)
h{z)D 1
Nir(2) =202 = — 1 SeD gty
or
__ 2
M@= (a+ﬁ)A*(a*)
N N* l):+m
vy C0 @
"‘""‘N - - (18¢)
5 z‘ 80,0
N N+
M) = — § 21 s
S Y B

il me1}

For fully converged §,.’s, expressions (18¢c) and
(18d) should yield the same numerical result. There-
fore, the comparison of these results for decreasing
Z provides an interesting check of convergence
behavior. The average Nusselt numbers are then
computed from

D, 1 [*
Nuav,l(z) = fﬂ%‘)"_h = 2 J; Nu(Z) dZ (19a)

Nug,2(Z) = 'ﬁ‘-”—%)gf’i = % L Nu{Z)dZ (19b)

and equation (19b) can be analytically integrated to
yield
(19¢c)

1
Nuav.z(z) = - "‘{Z In G,V(Z).
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RESULTS AND DISCUSSION

System (13) was solved with N = N* < 20 to illus-
trate the convergence behavior of the present approach,
within a wide range of Z, from 107* to 10° The
dimensionless average temperature demonstrated
excellent convergence characteristics, with practically
coincident results for N = N* = 11, 15 and 20. Figure
1 shows a comparison of Nu(Z) and Nu,(Z),
as obtained from equations (18¢) and (18d), for a
square duct (x* =b/a=1). For N=N*= 11 the
results from these two expressions are practically
coincident for Z > 6x 1074, with N = N*=15 for
Z22x107% and with N=N*=20for Z> 10"
Clearly, it can be noticed that Nusselt numbers com-
puted from the heat balance, equation (18d), have
better convergence than those from the application
of Fourier’s law, equation {18c). Figure 2 brings a
comparison among numerical approaches [1, 13-15],
in the range 1077 < Z < 10~ . Apparently, the results
in ref. [15] are the most accurate, while the variational
solution in ref. [13] and the results in ref. [1] lose
adherence as Z is decreased although not completely
evident in the range presented. It was also observed
that few terms are required (N = N* = 5) 10 obtain
a converged Nusselt number within this range of Z
considered by most numerical approaches. Table !}
presents a comparison of limiting Nusselt numbers
(Z - o) from various sources, compiled in ref. [1].
including the following proposed correlation, which
attempts to approximate the results of Miles and Shih
{1} to within +0.1%:

Nu(o) = 7.541(1 —2.6100* ' +4.970x*~?
—5.119a* 1 +2.7020* " * —0.548¢* %) (20)

where Nu(oo) = 7.541 corresponds to the case of a
parallel-plate channel (o* — o). The resuits of Miles
and Shih [1] with a 40 x 40 finite difference grid appear
to be more accurate than those by Schmidt [1], and
correlation (20) is sufficiently accurate for most practical
purposes.

Figures 3-5 correspond, respectively, to the dimen-
sionless average temperature, local Nusselt number, and
average Nusselt number along the thermal entry region
(10~* < Z < 10", for different aspect ratios, «*, pro-
viding a set of benchmark results both for reference
purposes and calibration of purely numerical schemes
devised for more involved problems.

Besides its efficiency, the present approach dem-
onstrated to be relatively cheap, in the range of N and
N* considered. By incorporating the ideas in ref. {9]
the present analysis might be extendable to the case
of irregularly shaped duct geometries described by an
orthogonal coordinate system.
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FiG. 2. Comparison with literature results from numerical approaches for a square duct (x* = bfa = 1).

Table 1. Comparison of limiting Nusselt numbers from different sources and for
various aspect ratios

Shah and
Miles and Shih Schmidt London
o« = 2b{2a Exactt {1} {1} 1))

1.0 2.978 2.976 2.970 2979
1.1 2.986 — — 2971
1.2 3.007 e — 2.992
1.5 3.128 317 — 3120
20 3.392 3.391 3.383 3.389
3.0 3.958 3.956 —_ 3.950
4.0 4.440 4.439 —_ 4.435
50 4810 —r 4.803 4.826
6.0 5.143 5.137 — 5.138
8.0 5.607 5.597 — 5.596
0.0 5930 — 5.858 5911

1 Present solution.
$ Equation (20).
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ECOULEMENT LAMINAIRE THERMIQUEMENT ETABLI A L'INTERIEUR DE
CONDUITS RECTANGULAIRES

Résumé—La convection forcée laminaire dans des conduits rectangulaires est étudiée analytiquement, par
extension de la technique générale de la transformation intégrale permettant la résolution des problémes
de convection-diffusion avec les problémes de valeurs propres non séparables. Des résultats sont donnés
pour des grandeurs d’intérét pratique dans la région d’entrée, pour un large domaine des variables axiales
et différents rapports de forme. La précision des résuitats antérieurement obtenus par des approches
numériques sont examinés de fagon critique, 4 la fois pour la région en développement et pour la région

établie.

THERMISCH NICHT AUSGEBILDETE STROMUNG IN RECHTECKIGEN KANALEN

Zusammenfassung—Die erzwungene laminare Konvektion im Innern eines rechteckigen Kanals wird analy-

tisch untersucht. Die verallgemeinerte Integral-Transformationstechnik wird erweitert und bietet jetzt die

Maglichkeit, Konvektions- und Diffusionsprobleme mit nicht separierbaren Eigenwerten zu ldsen. Fir die

GréBen, die im thermischen Einlaufgebiet von praktischem Interesse sind, stehen Referenzergebnisse iiber

einen weiten Bereich von axialen Variablen und verschiedenen Abmessungsverhéltnissen zur Verfligung.

Die Genauigkeit fritherer Ergebnisse bei direkter numerischer Berechnung wird kritisch untersucht, sowohl
fiir das Einlaufgebiet als auch bei thermisch ausgebildeter Strémung.

TEPMHYECKH PA3BHBAIOMEECA JAMHHAPHOE TEMEHHE B [TPAMOYTOJIBHBIX
KAHAJIAX

AmOTamE—AHAUTHTHYCCKH HCCHENYSTCR BHHYK/ACHHAR JIAMHHAPHAA XOHBEXIHA B NPAMOYIOMBHRX

KaHaJax ¢ npuMeHeHneM OGOOLICHHOTO METONR MHTETPANbHMX Mpeobpazopanull X petueHHam 3anay

xouscxuns ¥ middyInn ¥ CHNIAHNLIX ¢ HHMH 33441 KA coScTaennsic 3navenus. OnpeacncHsl xapaxrep-

Hbi¢ IHAYCHHA MAapaMeTpos oGnacTefl TENNOBOro BXOAR, AXCHAIBHBIX MEPCMEHHMX H PRATHIHBIX COOT-

sowmenit Cropo. KpHTHYECKH OUEHHBAETCK TOYHOCTH paHee ONYGAMKOBAMHLIX DE3YNBLTATOB,

MONYYCHHBIX NPAMLMHE YHC/ACHHBIMH MCTOAGMH LN C/IYYaCE DA3BMBRIOUICFOCH H NOJHOCTHIO Pa3sy-
TOTO YY&CTKOB.



