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Abstract-Laminar forced convection inside rectangular ducts is analytically studied by extending the 
generalized integral transform technique, allowing for the solution of convectiondiBusion problems with 
non-separable eigenvalue problems. Reference results are established for quantities of practical interest 
within the thermal entry region, for a wide range of the axial variable and various aspect ratios. The 
accuracy of previously reported results from direct numerical approaches is then critically examined, for 

both the developing and fully developed regions. 

INTRODUCTION 

HEAT TRANSFER solutions for laminar forced flow 
inside ducts of various shapes is of great interest to 
the design of compact heat exchangers, solar col- 
lectors and several other low Reynolds number flow 
heat exchange devices [1,2]. The establishment of 
benchmark results through analytical solutions is 
quite desirable [2] for both reference purposes and 
validation of direct numerical schemes, especially for 
thermally developing flows. Except for the simpler 
situations of ducts with cross sections definable by a 
single coordinate, such as circular tubes, parallel- 
plate channels, and annular ducts, a very limited 
amount of analytical work is available in the litera- 
ture, and most contributions deal with purely numeri- 
cal or approximate approaches [l]. The case of a rect- 
angular duct is a typical example of the difficulties 
associated with solving multidimensional convection 
problems, requiring costly numerical solutions [ 11, 
limited to regions away from the inlet (longer ducts). 
The exact solution of such a problem, through classical 
analytical methods [3] is inhibited due to the non- 
separable nature of the related eigenvalue problem. 
The present contribution attempts to alleviate this 
difficulty by extending the ideas in the so-called gener- 
alized integral transform technique [4-l l] to allow for 
the solution of this formally transformable but non- 
separable problem, providing an efficient algorithm 
for numerical computations. 

The case of a rectangular duct subjected to a con- 
stant wall temperature is more closely considered to 
illustrate the approach. An analysis of convergence is 
made and a set of benchmark results established for 
quantities of practical interest, such as dimensionless 
average temperature, local and average Nusselt 
numbers, within a wide range of the dimensionless axial 

t Permanent address : Departamento de Engenharia 
Mecanica, UNESP, Ilha Soheira, SP, Brazil. 

coordinate. Previously reported results [ 1, 13-l 5) 
from direct numerical approaches are then criti- 
cally examined for both fully developed and thermally 
developing regions, limited to a narrow range of the 
dimensionless axial coordinate. 

ANALYSIS 

We consider laminar flow of a Newtonian fluid 
inside a rectangular channel of sides 2a and 26, with 
a fully developed velocity profile and subjected to a 
constant wall temperature. For thermally developing 
flow the associated energy equation is written in 
dimensionless form as 

O<X<a, O<Y<j?, z>o (la) 

with inlet and boundary conditions given, respec- 
tively, by 

e(X,Y,O)= 1, OdX,<a, O< YGjl (lb) 

w, Y, a 
8X x-o 

= 0 ; e(a, Y, z) = 0, z > 0 (Ic,d) 

gg(x, Y, z) 

I 8Y Y-O 
=o; e(x,B,z)=o, Z>O (le,f) 

where the following dimensionless groups were 
defined : 

em y, .a = Tk Y, 4 - Tw 
T-T, 

; XL; y+ 
h h 

u(x,y)=y; z=&; &d&,Dh 
h 
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NOMENCLATURE 

half the side of the rectangular duct in 
the x-direction 
cross-sectional area 
half the side of the rectangular duct in 
the y-direction 
hydraulic diameter, 4AJP 
local heat transfer coefficient 
average heat transfer coefbcient 

thermal conduct~vjty 
Peclet number, Re Pr 
coefficients from problem (15b), 
j= l,...,N*N* 
inlet temperature 
wall temperature 
average flow velocity 

u(x,y) velocity field $,(X) 

x 

eigenfunctions of problem (4). 

transversal coordinate 

Y transversal coordinate 
2 axial coordinate. 

Greek symbols 
r* aspect ratio of rectangular duct, 26/2a 

i; eigenvalues of matrix F, as in problem 

(14) 
iW eigenvector of matrix F, as in problem 

(14) 
&I eigenvalues of problem (5) 

pi eigenvalues of problem (4) 
#,,,(_v} eigenfun~tions of problem (5) 

The dimensionless velocity profile is given as an 
infinite series [I] 

U(X, Y) = A*(z*) f B,F,(Y)G&‘) (3a) 
k= I.L... 

where 

A*@*) = 
48 

tanh (knz*/2) 
(3b) 

k” 

& r= (-I)“- “‘2 
k’ (3c) 

(W 

and 

x* = 2b/2a = aspect ratio. (3e,f) 

The exact solution of problem (1) through well- 
known analytical methods, such as the classical 
integral transform technique [3], is not possible due 
to the non-separable nature of the velocity profile 
and consequently, of the related eigenvalue problem. 
However, the recently advanced ideas on the gener- 
alized integral transform technique [4-111 can be 
modified to allow for an analytical treatment of the 
present problem as now demonstrated. First, the 
difficulties associated with the eigenvalue problem 
are alleviated by choosing the following auxihary 
problems instead : 

t.*p +&(r(,,y) = 0; 0 c Xc a (4a) 

and 

dJt(li- 9 
dX x=0 

= 0; $@,a) =O Wwf 

d’$(i, Y) 
dY’ +~V@-, Y) = 0; 0 < Y < /3 ($3) 

d#C4 Y) 
dY Y-O 

=o; r#+.,fl)=O (Sb,c) 

which are readily solved to yield eigenfunctions, eigen- 
values, and norms as 

Ijli(.r) = COS(~iX); 4,(Y) = COS (imY) (6a,b) 

pi = 
(2&I)n, i (2m-1)n 
y’ ‘m= 

2x 28 
(6cd) 

iv:=;; 2%4,=-f, , , ye-., ’ im=12 (WI 

Problems (4) and (5) above allow the establishment 
of the following integral transform pair. 

Transform 

hersion 

Equation (Ia) is now operated on with x P JS +i(Xh#nt(Y) dYdX II 0 
to yield, after employing the inversion formula above 
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,j$ $, Dij+ +(p?+%$&?) = 0, _ _ 

where 

x U{X, Y)dYdX 

while the transformed inlet condition becomes 

The double integral in equation (8b) is evaluated to 
provide 

A*(a*) 03 
Djin,, = - 

&na, ,_g,.. BklfiijkikAk .* . 
where 

1 1 
+ 

&-F’c+% - &+&Cclfak 

* ,$,,k = M,S, +  (- “i+“+ ’ ak tanh (+/I) 

W 

kn 

ak=% 
System (8) above provides a denumerable system of 

coupled ordinary differential equations with constant 
coeffiGents, to be solved for the transformed poten- 
tials, &,‘s. So far the analysis is formal and exact, but 
for the sake of obtaining numerical results from this, 
a priori, formal solution, the infinite system (8) has 
to be truncated to a sufficiently large finite order for 
the desired convergence. Then, following ref. [8J, the 
truncated system is written as 

i= 1,2,..., N, m= l,2 ,..., N* (loa) 

with 

&JO) = & (lob) 

and the finite system (10) of N. N* coupled equations 
is given in matrix form 

Cy’+Ey=O 

Y@f = g 

Y = {B,,Cz>,B,,(z>,...,B,,(z),~2,(z) ,..., 
&NGJ,.. . . ,rt,,Cz>,. ..,fJNwG3,>’ (12a) 

g = {&J,2,.. .,d,p& I,..., &I*,. .., 
= 
gsw,. . . ,&v)T (12b) 

E= {GJ+ ejn = Sp(CI:+Ir,“), S, = 
0, i#j 
I, i=j 

W) 

j,n= 1.2 ,..., N*N*; l=int(j/N*)+l; 

k = j- N* int ((j- 1)/N*); C = (cjn) ; 

Cj” = Djrkk'; j,n= 1,2 ,..., N-N*; 

i’ = int (n/N*)+ 1; 

k’ = n-N* int ((n- 1)/N*). 

System (1) can then be rewritten in 
through inversion of matrix C to yield 

y’fFy = 0 

Y(O) = g 

where 

F= C-‘E. 

(124 
normal form 

W) 

Wb) 

This finite (N* N*) system with a 

(l3c) 

constant co- 
efficients matrix, F, can be readily solved once the 
eigenvalues and eigenvectors of the real matrix F have 
been obtained from the solution of the algebraic 
problem 

(F-y& = 0 

and the solution of system (13) is written as 

(14) 

y(z) = r, e-7,zc(i)* ‘.. +rN_N’e-7., ‘.,. z5”-.v’) 

Wa) 

where the COeffiCientS F,, . . . , rwNs are obtained from 
satisfying the transformed inlet condition, which cor- 
responds to solving the following system of linear 
algebraic equations : 

pr, + * * * +rN.#+N*) = g. WV 

Problems (14) and (15b) are handled by making use 
of well-known algorithms already available as packed 
subroutine, such as in ref. 1121, to provide the trans- 
formed potentials from equation (Ha). ~tematively, 
efficient numerical algorithms for initial value prob- 
lems can be utilized to directly solve system (13), such 
as in subroutine DGEAR from the IMSL package 
[ 121, with high accuracy. 

Once the transformed potentials have been 
obtained, the inversion formula (7b) is recalled to 
provide the complete temperature profile 

The dimensionfess average temperature is then 
computed from its definition where 
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U(X, Y)O(X, Y, Z) dA (17a) System (13) was solved with N = N* < 20 to illus- 
trate the convergence behavior of the present approach, 
within a wide range of Z, from foe4 to IO’. The 
dimensionle~ average tem~rature demonstrated 
excellent convergence characteristics, with practically 
coincident results for N = N* = 1 I, I5 and 20. Figure 
I shows a comparison of Nu,(Z) and Nu2(Z), 
as obtained from equations (18~) and (18d), for a 
square duct (x* = b/a = I). For N = N* = I I the 
results from these two expressions are practically 
coincident for 2 3 6 x 10mJ, with N = N* = 15 for 
Z> 2x lo-*, and with N= N* = 20 for Z> lo-‘. 
Clearly, it can be noticed that Nusselt numbers com- 
puted from the heat balance, equation (18d), have 
better convergence than those from the application 
of Fourier’s law, equation (18~) Figure 2 brings a 
comparison among numerical approaches f 1,13-l 53, 
in the range 10e2 < 2 < 10-l. Apparently, the results 
in ref. [ 151 are the most accurate, while the variational 
solution in ref. [13] and the results in ref. [I] lose 
adherence as Z is decreased although not completely 
evident in the range presented. It was also observed 
that few terms are required (N = N* 2 5) to obtain 
a converged Nusselt number within this range of 2 
considered by most numerical approaches. Table 1 
presents a comparison of limiting Nusselt numbers 
(Z+ m) from various sources, compiled in ref. [I], 
including the following proposed correfation, which 
attempts to approxjmate the results of Miles and Shih 
[l] to within +O.l%: 

; f B,Q,&,,Q) (17b) 
i=I m-l 

where 

(l7c) 

The local Nusselt number can be evaluated by 
making use of the temperature gradients at the wall 
integrated over the perimeter, or utilizing the axial 
gradient of the average temperature, providing the 
following couple of working formulae : 

(184 

1 
Nu,(Z)=~= _~_ de’v(Z) (18b) 

46,,(z) dZ 

or 

(184 

i=t m-=l 

For fully converged &=‘s, expressions (18~) and 
(18d) should yield the same numerical result. There- 
fore, the comparison of these results for decreasing 
Z provides an interesting check of convergence 
behavior. The average Nusselt numbers are then 
computed from 

L(4& 1 z 
Wv,, (z) = K = 2 s Nu,(Z) dZ (19a) 

0 

h,“(W, I = 
Nu,,.z(z) = I( = 2 

s 
Nu>(Z) dZ (19b) 

0 

and equation (19b) can be analytically integrated to 
yield 

Nu(c0) = 7.541(1-2.6lOa*-‘+4.9705(*-* 

-5.1191*-3+2.702r*-‘-0.548x*-5) (20) 

where Nu(co) = 7.541 corresponds to the case of a 
parallel-plate channel (r* -+ co). The results of Miles 
and Shih [1] with a 40 x 40 finite difference grid appear 
to be more accurate than those by Schmidt [I], and 
correlation (20) is sufficiently accurate for most practical 
purposes. 

Figures 3-5 correspond, respectively, to the dimen- 
sionless average temperature, local Nusseh number, and 
average Nusselt number along the thermal entry region 
(lOeJ < Z < IO’), for different aspect ratios, a*, pro- 
viding a set of benchmark results both for reference 
purposes and calibration of purely numerical schemes 
devised for more involved problems. 

Besides its efficiency, the present approach dem- 
onstrated to be relatively cheap, in the range of Xand 
N* considered. By incorporating the ideas in ref. [9] 
the present analysis might be extendable to the case 
of irregularly shaped duct geometries described by an 
orthogonal coordinate system. 

Ackno,vledgemen~~~ne of the authors (J.B.A.) wishes to 
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Brazil and UNESP-llha Solteira Campus, Brazil, during his 
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---- N+(Z) : N = 20 

1L I 2 II,.* 4 lf-03 2 1 4 IL*1 lE-02 2 1 4 I*,, lE-01 2 II,& 4 tE+OO 
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FIG. 1. Convergence of local Nusselt number for a square duct (a* = b/a = 1). 

4.00 ., ‘3 

3.80 - 

3.60 - 

5 

2” 
3.40 - 

3.20 - 

. . . . . . . . . . Mu2 {a 

---- Shah and London 111 

-‘-d Chandrupatla and Sastri [15] 

---Dunwoud and Hamill [14] 

-*-- Javeri [13] 

3.00 
1 E-02 2 4 6 8 It 

FIG. 2. Comparison with literature results from numerical approaches for a square duct (a* = b/a = I). 

Table 1. Comparison of limiting Nusselt numbers from different sources and for 
various aspect ratios 

Shah and 
Miles and Shih Schmidt London 

a=26/2a Exactt ill PI Ulf 

I.0 2.978 

1:: 2.986 3.007 
::; 3.392 3.128 

3.0 3.958 
4.0 4.440 
5.0 4.810 
6.0 5.143 
8.0 5.607 

10.0 5.930 

t Present solution. 
$ Equation (20). 

2.976 2.970 
- - 
- 

3.117 
3.391 
3.956 
4.439 

- 
5.137 
5597 

- 

- 
- 

3.383 
- 
- 

4.803 
- 
- 

5.858 

2.979 
2.971 
2.992 
3.120 
3.389 
3.950 
4.435 
4.826 
5.138 
5.596 
5.91 I 
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FIG. 3. Dimensionless average temperature profiles for rectangular ducts with different aspect ratios. 
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FIG. 4. Local Nusselt numbers in the thermal entry region of rectangular ducts with different aspect ratios. 
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FIG. 5. Average Nusselt numbers in the thermal entry region of rectangular ducts with different aspect 
ratios. 
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ECOULEMENT LAMINAIRE THERMIQUEMENT ETABLI A L’INTERIEUR DE 
CONDUITS RECTANGULAIRES 

R&sum&-La convection fot&e laminaire dans des conduits rectangulaires est btudi& analytiquem~~ par 
extension de la technique g&&ale de la tra~fo~ation int&raie permettant la r&solution des probl&mes 
de convection-diffusion avec les problbmes de valeun propres non &parables. Des r&sultats sont don& 
pour des grandeurs d’int&!t pratique dans la r&ion d’ent&e, pour un large domaine des variables axiales 
et differents rapports de forme. La pr6cision des r6sultats ant&ieurement obtenus par des approches 
numiriques sont examines de fa9on critique, d la fois pour la rbgion en dbveloppement et pour la r&ion 

Ctablie. 

THERMISCH NICHT AUSGEBILDETE STRC)MUNG IN RECHTECKIGEN KANALEN 

zmalmnellf assung-Die erzwungene laminare Konvektion im Innern eines rechteckigen Kanals wird analy- 
tisch untersucht. Die verallgemeinerte Intel-Transfo~ationst~~ik wird erweitert und bietet jetzt die 
M~~ichkei~ Konvektions- und ~ffusio~probl~e mit nicht separierbaren Eigenwerten zu l&en. Fiir die 
GriiBen, die im therm&hen ~inlaufgebiet von praktischem Interesse sind. stehen Referenzergebnisse iiber 
einen weiten Bereich von axialen Variablen und verschiedenen Abm~un~verh~ltni~n zur VerQung. 
Die Gcnauigkeit Mherer Ergebnisse bei direkter numerischer Bereohnung wird kritisch untenucht, sowohl 

fiir das Einlaufgebiet als such bei thermisch ausgebildcter StrGmung. 

TEPMWIECKM PA3BMBAIGIQEECII IIAMWHAPHOE TEYEHHE B fIPIIMOYTOJIbHbfX 
KAHAJIAX 


